

Predicting properties of quantum thermal states **from a single trajectory**

Jiaqing Jiang
Simons Institute, UC Berkeley

with Jiaqi Leng (Simons Institute) and Lin Lin (UC Berkeley)

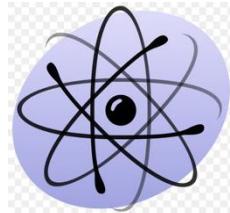
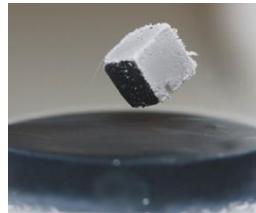
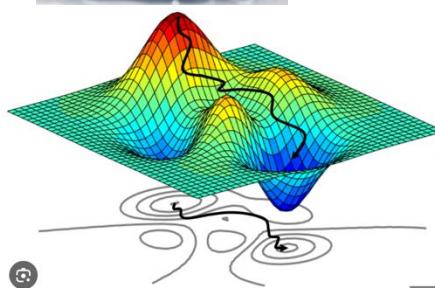
New Frontiers in Quantum Algorithms for Open Quantum Systems,
2026.1.13

Properties of thermal states

Thermal state describes many-body system at finite temperature

$$\rho_{\beta H} := e^{-\beta H} / \text{tr}(e^{-\beta H})$$

β inverse temperature; H local Hamiltonian



Our task: Properties of thermal state

$\text{tr}(O \rho_{\beta H})$ for observable O

Gradient of Boltzmann machine

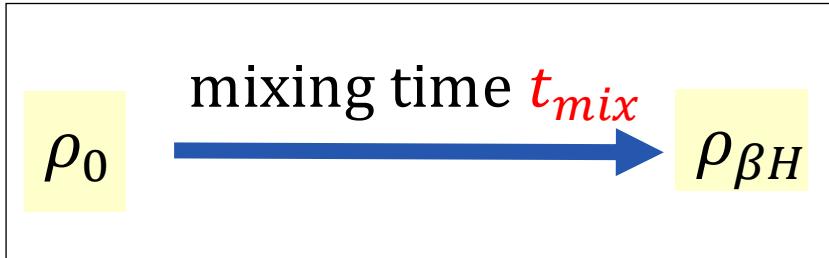
Existing methods for estimating $\text{tr}(\mathcal{O}\rho_{\beta H})$.

- ❖ **Classical Markov Chain Monte Carlo (MCMC)**

(Sign problem; [Limited accuracy](#) for general quantum system)

Existing methods for estimating $\text{tr}(\mathcal{O}\rho_{\beta H})$.

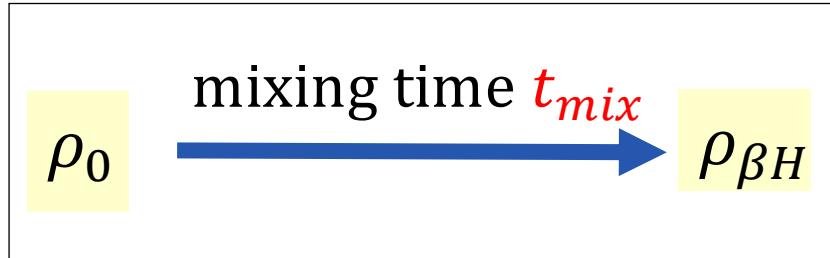
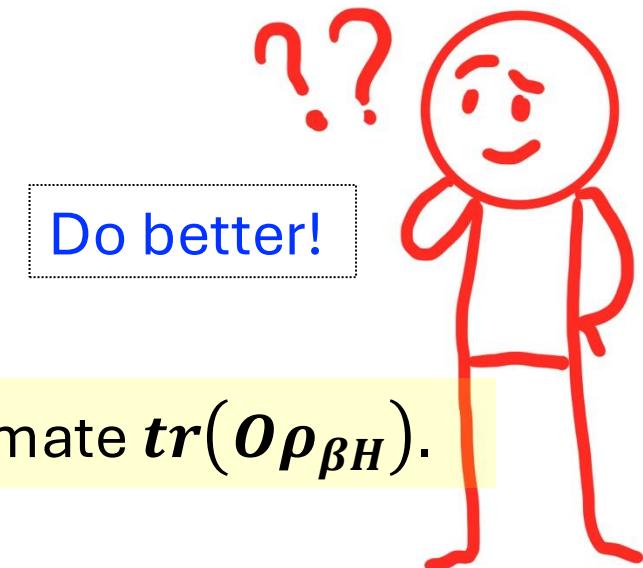
- ❖ **Quantum Gibbs sampling** (quantum MCMC)
(No sign problem; promising approach for high accuracy)



- Davies generator-inspired approach [CKBG23, DLL24, RWW23]
- Quantum Metropolis sampling [JI24, TOV+11]
- System-bath interactions [DZPL25]
- ... (check yesterday's talk!)

Existing methods for estimating $\text{tr}(\mathcal{O}\rho_{\beta H})$.

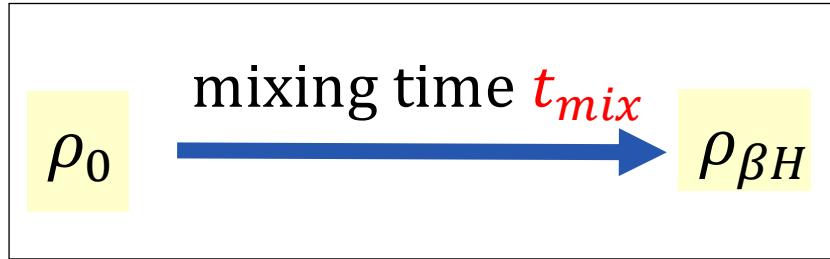
- ❖ **Quantum Gibbs sampling** (quantum MCMC)



- ❖ **Our goal:** Use quantum Gibbs sampling to estimate $\text{tr}(\mathcal{O}\rho_{\beta H})$.

Existing methods for estimating $\text{tr}(\mathcal{O}\rho_{\beta H})$.

- ❖ **Quantum Gibbs sampling** (quantum MCMC)



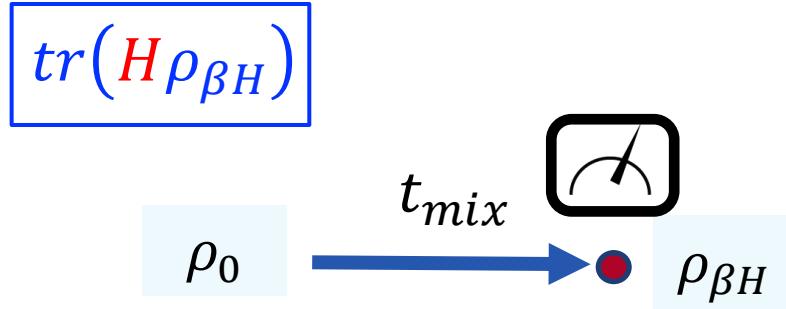
$\text{tr}(\mathcal{H}\rho_{\beta H})$
Extension discussed later

- ❖ **Our goal:** Use quantum Gibbs sampling to estimate $\text{tr}(\mathcal{O}\rho_{\beta H})$.

Outline $tr(\textcolor{red}{H}\rho_{\beta H})$

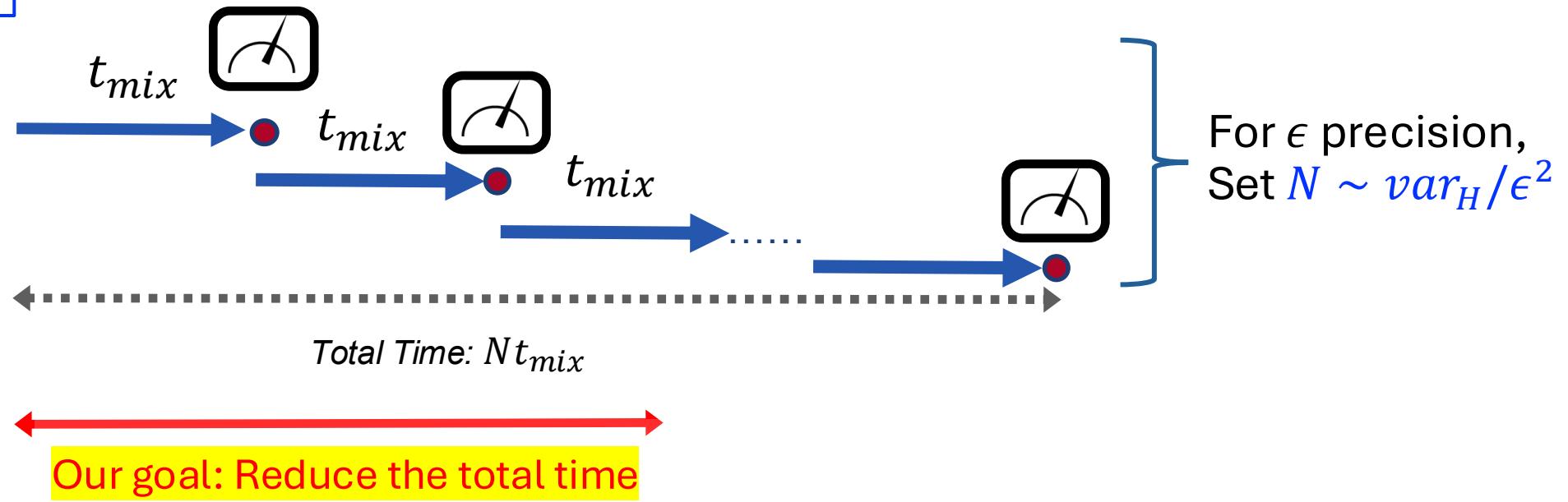
- Multiple-trajectory approach
- Single-trajectory approach (our approach)
- Challenge and strategy
- Practical mode (without knowing the spectral gap)
- Extensions

Multiple-trajectory approach



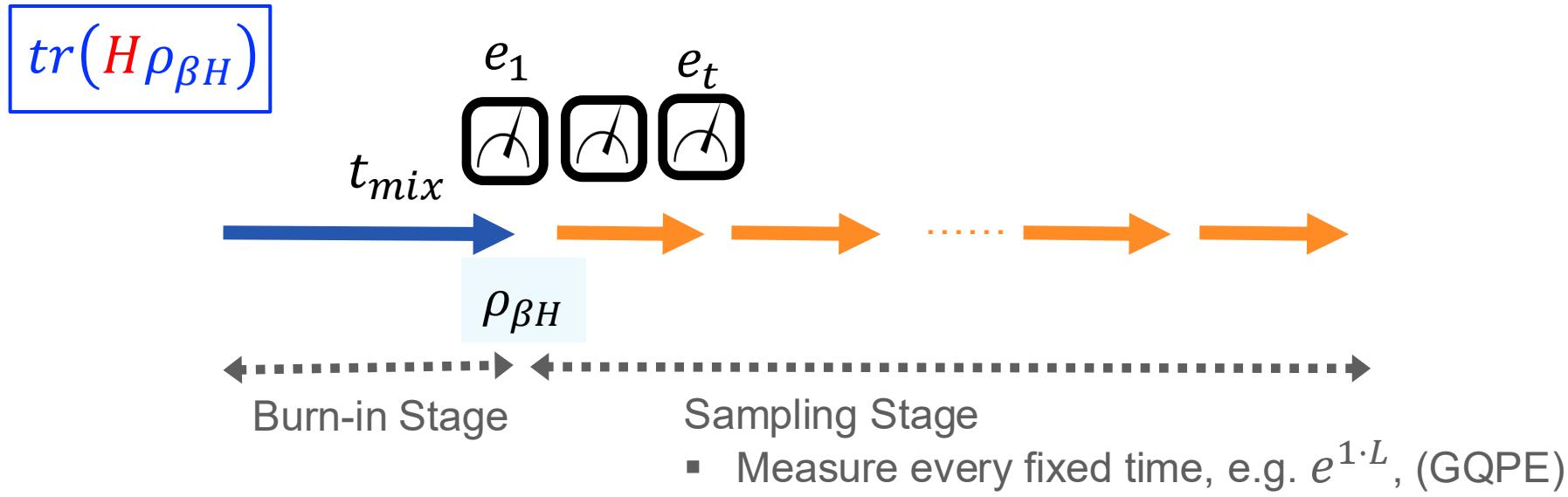
Multiple-trajectory approach

$$tr(H\rho_{\beta H})$$



Get (effectively) independent sample with time shorter than t_{mix} !!!

Single-trajectory approach (our method)



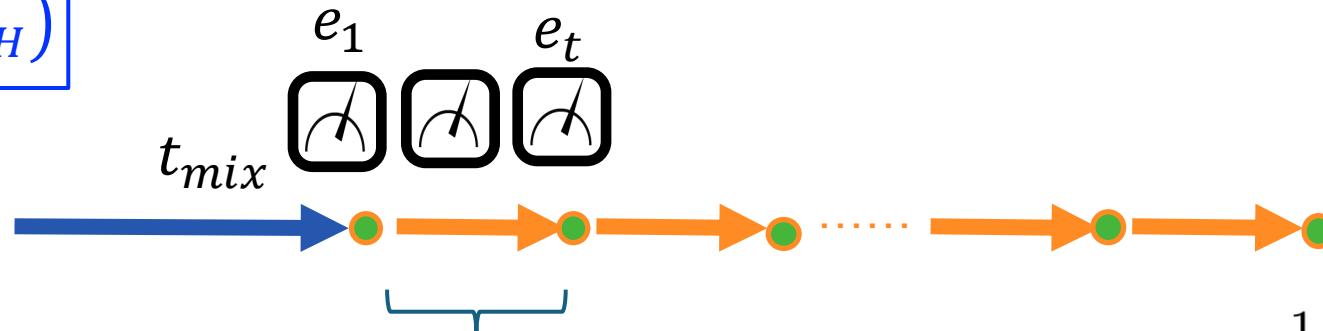
$tr(H\rho_{\beta H})$ is estimated by the empirical average

$$\frac{1}{K} (e_1 + \dots + e_K)$$

How quickly e_t becomes effectively independent from e_1

Autocorrelation time t_{aut}

$$tr(H\rho_{\beta H})$$



- Effectively independent sample **every t_{aut}**
- Typically $t_{aut} \ll t_{mix}$, (see next slide)

$$t_{aut} \sim \frac{1}{2} + \sum_{t=1}^{\infty} \frac{Cov(e_1, e_{t+1})}{var_H}$$

connected to the performance of
 $(e_1 + \dots + e_K)/K$ by chebyshev inequality

Total time $t_{mix} + Nt_{aut}$ which is **much shorter** than Nt_{mix}

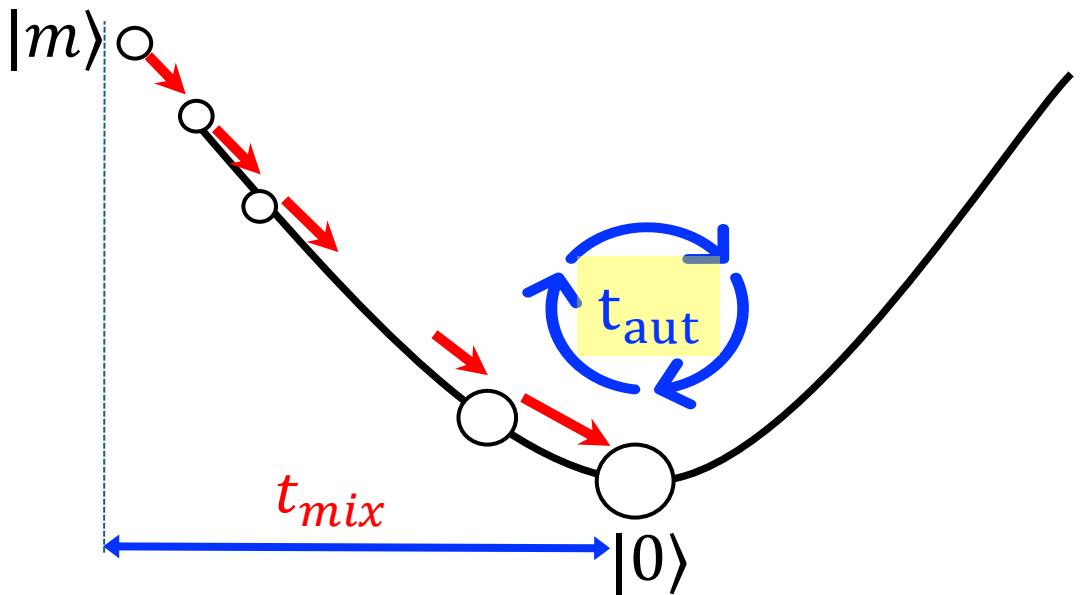
Why typically $t_{\text{aut}} \ll t_{\text{mix}}$? (a) Intuitive reason

Timescale for effective independence

Why typically $t_{\text{aut}} \ll t_{\text{mix}}$? (a) Intuitive reason

Timescale for effective independence

(1) warm start

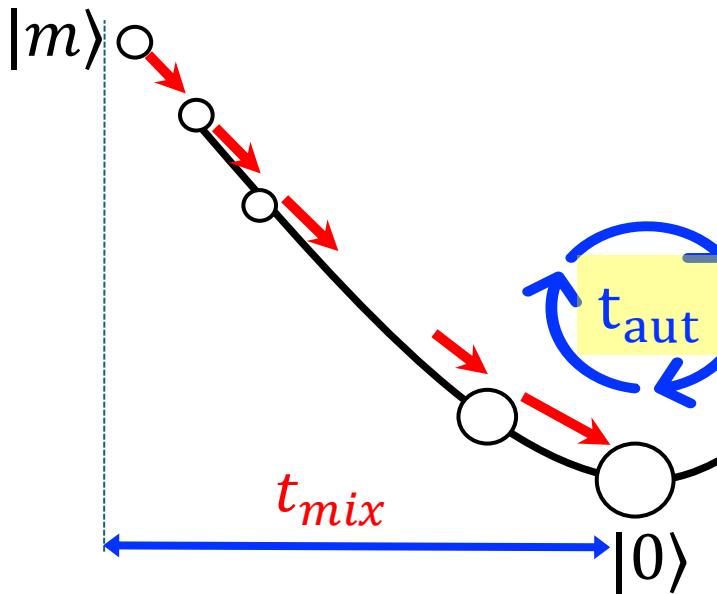
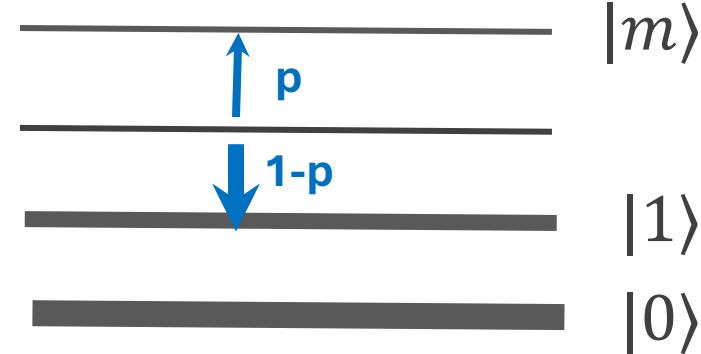


Why typically $t_{\text{aut}} \ll t_{\text{mix}}$? (a) Intuitive reason

Timescale for effective independence

(1) warm start

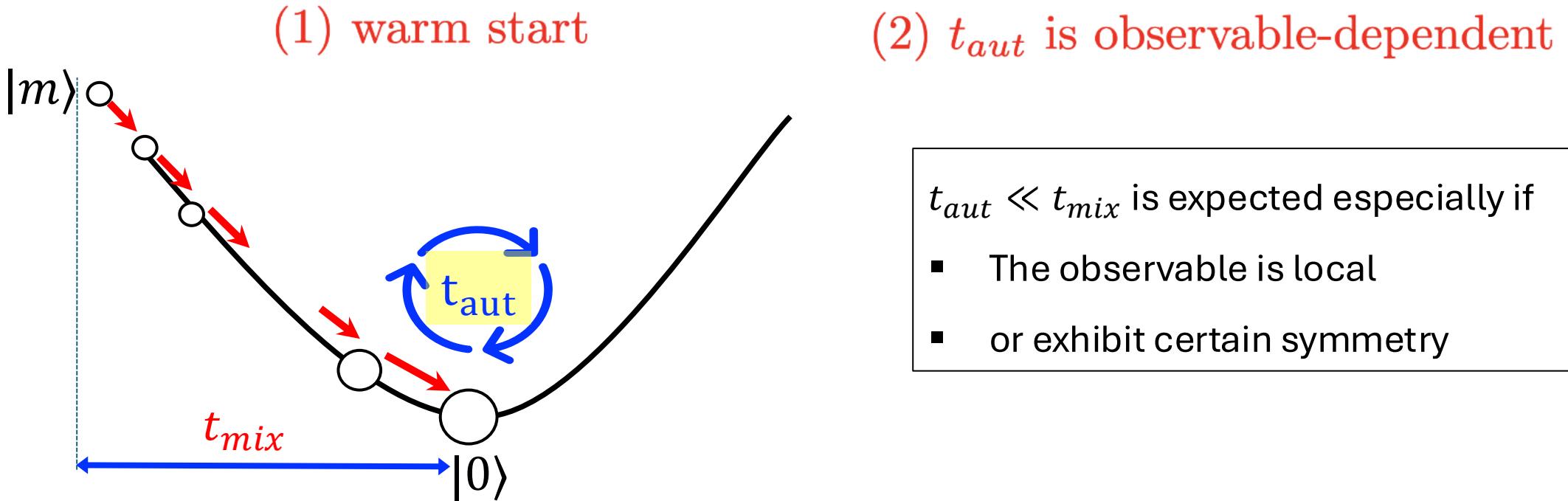
eg. quantum birth-death chain



$$t_{\text{mix}} \sim m, t_{\text{aut}} \sim 1$$

Why typically $t_{aut} \ll t_{mix}$? (a) Intuitive reason

Timescale for effective independence

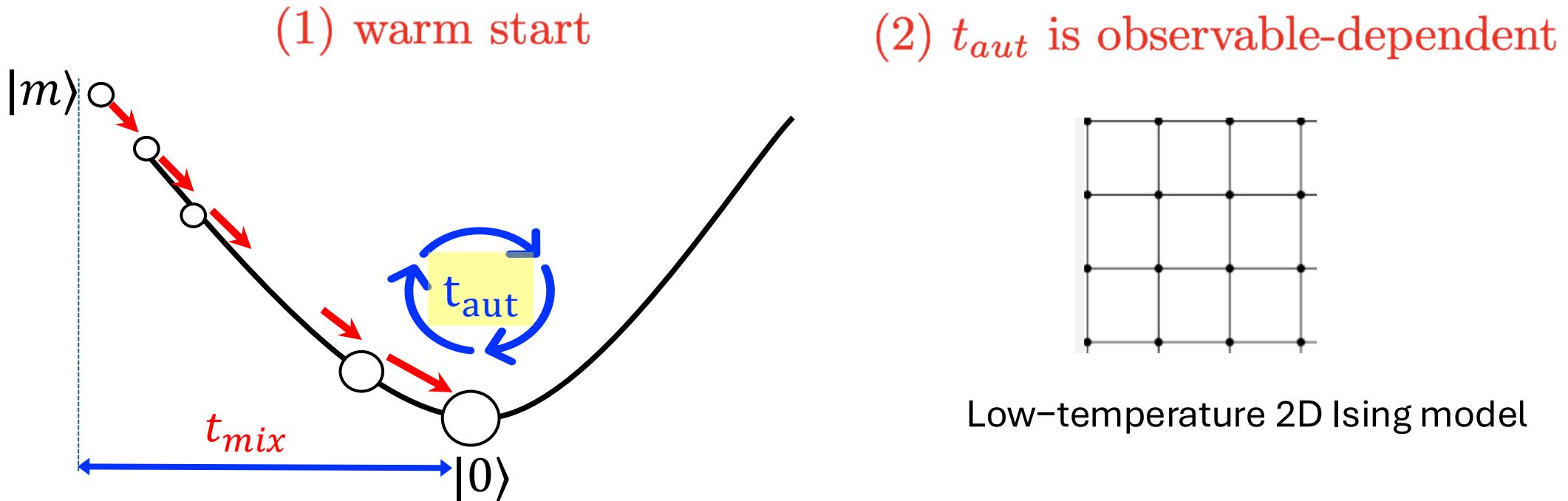


$t_{aut} \ll t_{mix}$ is expected especially if

- The observable is local
- or exhibit certain symmetry

Why typically $t_{\text{aut}} \ll t_{\text{mix}}$? (a) Intuitive reason

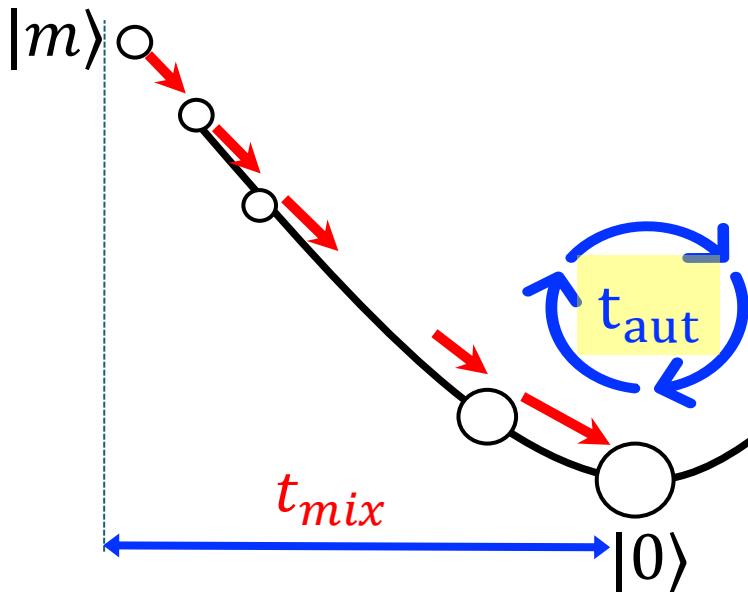
Timescale for effective independence



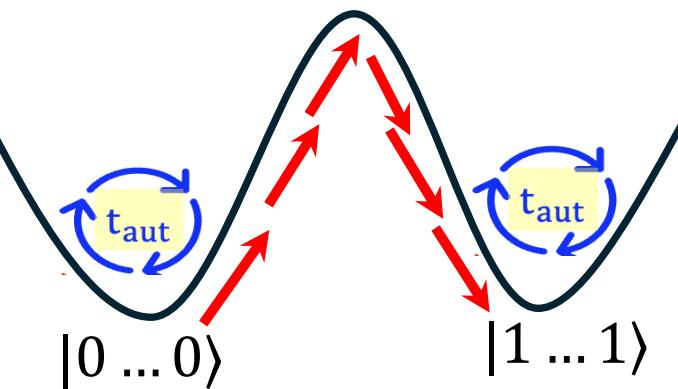
Why typically $t_{\text{aut}} \ll t_{\text{mix}}$? (a) Intuitive reason

Timescale for effective independence

(1) warm start



(2) t_{aut} is observable-dependent

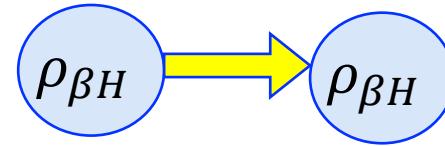


- t_{mix} is exponential
- t_{aut} for energy *might* be polynomial suggested by [GA22]

Why typically $t_{aut} \ll t_{mix}$? (b) rigorous bound

Our result (general theorem): In quantum Gibbs sampling, for any observable that can be measured by a detailed balanced(DB) channel,

$$t_{aut} \leq 1/gap.$$



- Includes H; Observables commuting with H;
(average energy, heat capacity, *partition function...)
In principle, more general
- For non-DB observable, discussed later

Why typically $t_{aut} \ll t_{mix}$? (b) rigorous bound

Our result (general theorem): In quantum Gibbs sampling, for any observable that can be measured by a detailed balanced(DB) channel, observable H

$$t_{aut} \leq 1/gap.$$

Why typically $t_{aut} \ll t_{mix}$? (b) rigorous bound

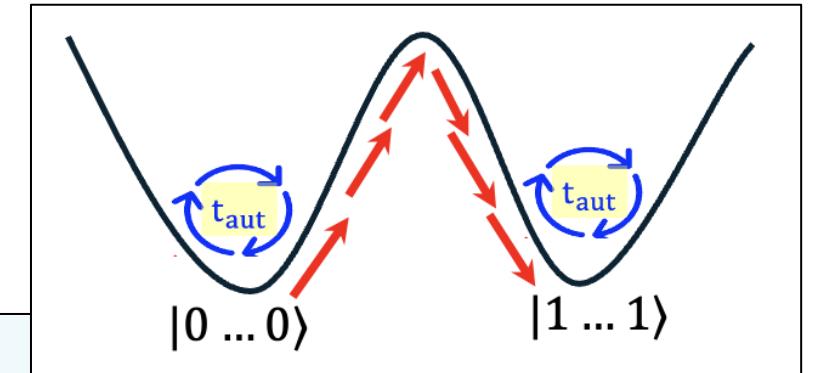
Our result (general theorem): In quantum Gibbs sampling, for any observable that can be measured by a detailed balanced(DB) channel,

$$t_{aut} \leq 1/gap.$$

$$\frac{1}{gap} \lesssim t_{mix} \lesssim \frac{1}{gap} \log(\sigma_{min}^{-1})$$

As large as the system-size n

observable H



- In theory t_{aut} may differ from t_{mix} by a factor of n ;
- In practice the separation can be even larger (e.g. sub-exponential)

Why typically $t_{aut} \ll t_{mix}$? (b) rigorous bound

Our result (general theorem): In quantum Gibbs sampling, for any observable that can be measured by a detailed balanced(DB) channel,

observable H

$$t_{aut} \leq 1/gap.$$

- Our result is **non-trivial** since (**next two slides**)
 - 1) Measuring H disturbs the Gibbs sampling (**controlled**)
 - 2) High cost of QPE (**reduced to logarithmic overhead**)

Why non-trivial (1): Measurement disrupts the Gibbs sampling evolution

classical MCMC: $|x_1\rangle \rightarrow |x_2\rangle \dots \rightarrow |x_t\rangle \dots \rightarrow$

Quantum MCMC: $|\psi_1\rangle \rightarrow \sum_j \alpha_j |\psi_j\rangle \rightarrow \dots$

$|\psi_j\rangle$

Our observation:

$(\mathcal{M}\mathcal{N}\mathcal{M})$

New t_{mix} and new t_{aut} ?

The effective quantum channel

\mathcal{M} measurement channel; \mathcal{N} Gibbs sampling channel

Why non-trivial (1): Measurement disrupts the Gibbs sampling evolution

classical MCMC: $|x_1\rangle \rightarrow |x_2\rangle \dots \rightarrow |x_t\rangle \dots \xrightarrow{e_t}$

Quantum MCMC: $|\psi_1\rangle \rightarrow \sum_j \alpha_j |\psi_j\rangle \xrightarrow{\text{red X}} |\psi_j\rangle$

Our observation:

$$\text{gap}(\mathcal{M}\mathcal{N}\mathcal{M}) \geq \text{gap}(\mathcal{N})$$

The effective quantum channel

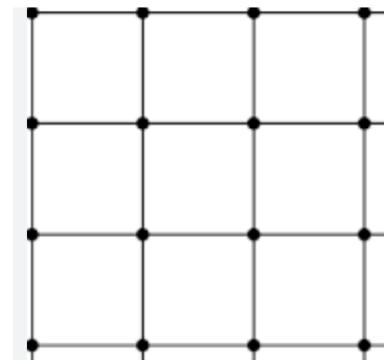
Proof: compare the **Dirichlet form**;
use the **contractive property** of
DB channel.

\mathcal{M} measurement channel; \mathcal{N} Gibbs sampling channel

Why non-trivial (2): High cost of QPE

Classical
MCMC

- gate cost $\sim n$,
depth cost ~ 1



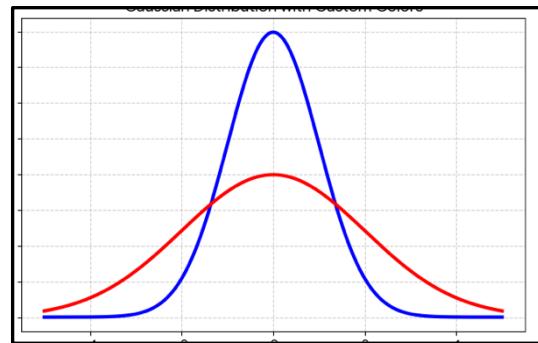
Quantum
MCMC

high precision QPE

- gate cost $\sim n \epsilon^{-1}$,
depth cost $\sim \epsilon^{-1}$

Our solution: unbiased measurement; logarithmic overhead

- Gaussian filtered QPE** with ~ 1 variance [M19]
- Gate cost $\sim n \text{ polylog } \epsilon^{-1}$, depth cost $\sim \text{polylog } \epsilon^{-1}$
- Logarithmic ancilla qubits

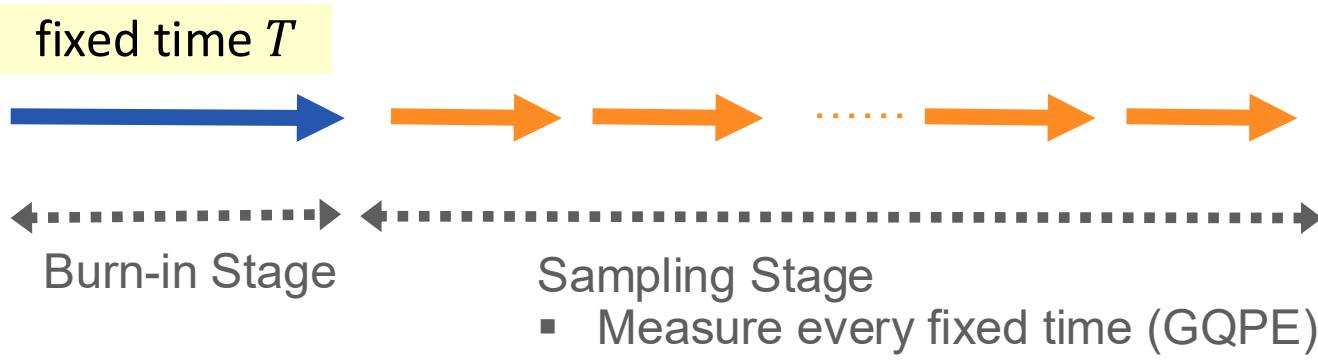


Outline $tr(\textcolor{red}{H}\rho_{\beta H})$

- Single-trajectory approach (our approach)
- Challenge and strategy
- Practical setting (without knowing the spectral gap)
- Extensions

Practical setting: no prior knowledge of t_{mix} , t_{aut}

Practical setting: no prior knowledge of t_{mix} , t_{aut}



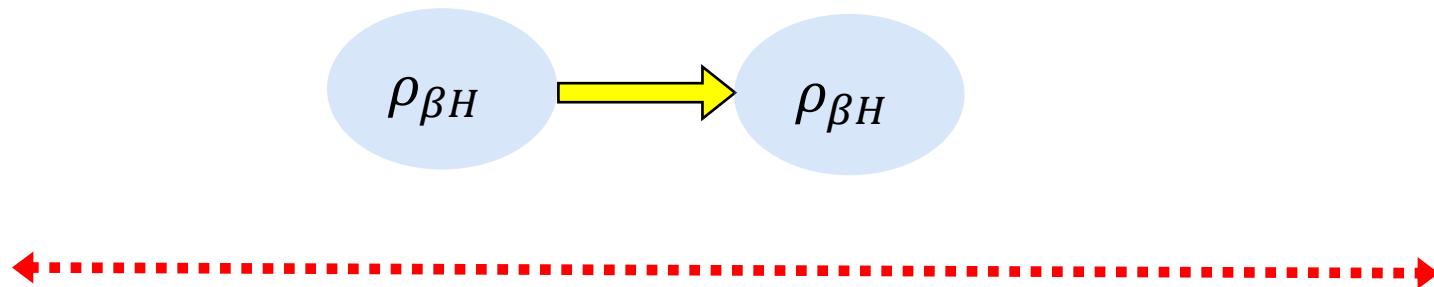
$$\frac{1}{K} (e_1 + \dots + e_K) \rightarrow \text{tr}(H\rho_{\beta H})$$

slower convergence rate

- Our method can be used as **empirical way to verify the convergence** of quantum Gibbs sampling
- (quantum analogy of **Gelman–Rubin diagnostic** in MCMC)

Extension to detailed balanced measurement

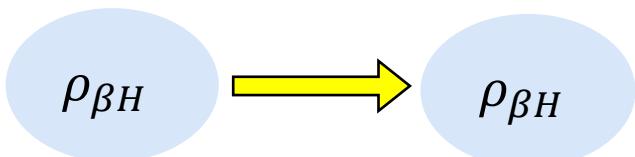
Our result can be generalized to any DB observable O .



Total time: $t_{\text{mix}} + Nt_{\text{aut}}$ and $t_{\text{aut}} \leq 1/\text{gap}$

Potential extension for general observables

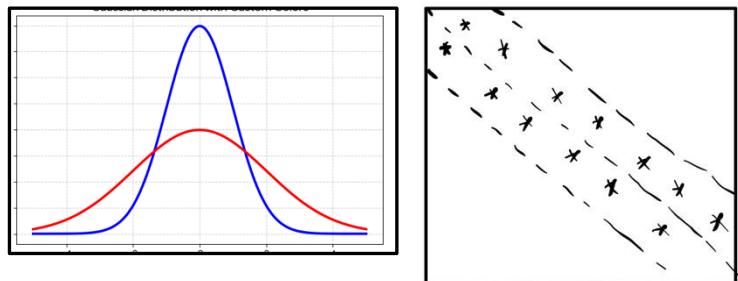
Goal: for any **observable O** , design a measurement s.t.



- (1) Fixes Gibbs state (and satisfy DB)
- (2) Recover $\text{tr}(O \rho_{\beta H})$

Weighted operator Fourier Transform
(WOFT) [CKG23]

$$O \longrightarrow \hat{O}(\tau)$$

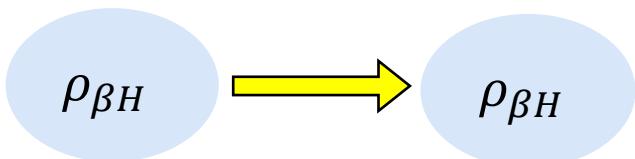


- (1) $[\hat{O}(\tau), H] \rightarrow 0, \text{ as } \tau \rightarrow 0$
- (2) $\text{tr}(\hat{O}(\tau) \rho_{\beta H}) = \text{tr}(O \rho_{\beta H})$

$$\hat{O}(\tau) := \int_{-\infty}^{+\infty} e^{iHt} O e^{-iHt} f(t) dt$$

Potential extension for general observables

Goal: for any observable O , design a measurement s.t.



- (1) Fixes Gibbs state (and satisfy DB)
- (2) Recover $\text{tr}(O \rho_{\beta H})$

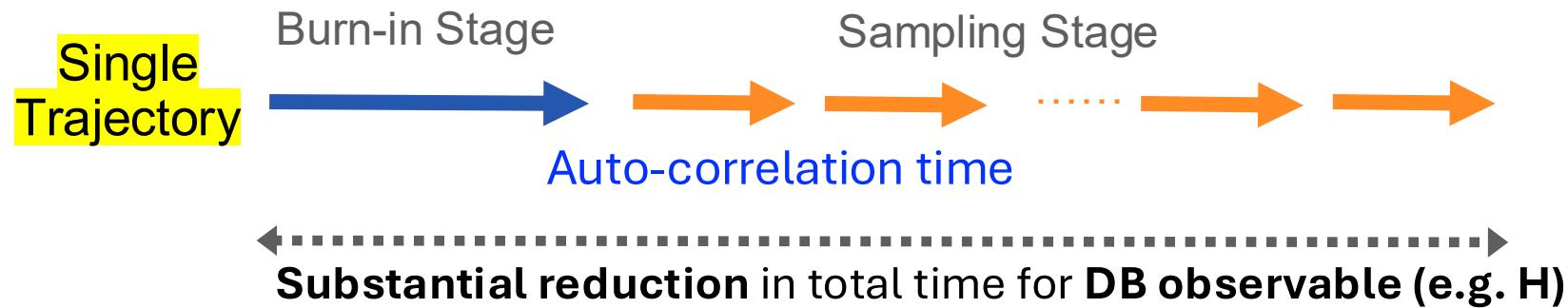
Weighted operator Fourier Transform
(WOFT) [CKG23]

$$O \longrightarrow \hat{O}(\tau)$$

- (1) $[\hat{O}(\tau), H] \rightarrow 0$, as $\tau \rightarrow 0$
- (2) $\text{tr}(\hat{O}(\tau) \rho_{\beta H}) = \text{tr}(O \rho_{\beta H})$

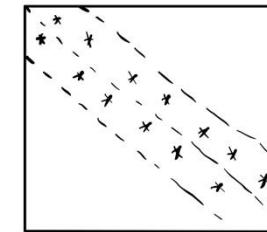
- Measurement cost for $\hat{O}(\tau)$ is $\sim \tau^{-1}$
- $\tau^{-1} \sim \log \epsilon^{-1}$ if commutator decays exponentially, e.g. gapped system

Summary and open question



Open Problem: Measure general observable in a DB way?

- 1) WOFT, more numerical experiments?
- 2) Techniques from quantum Gibbs sampling
- 3) ϵ^{-1} -lower bound for the overhead?



- [CKBG23, DLL24, RWW23]
- [JI24, DZPL25, TOV+11]

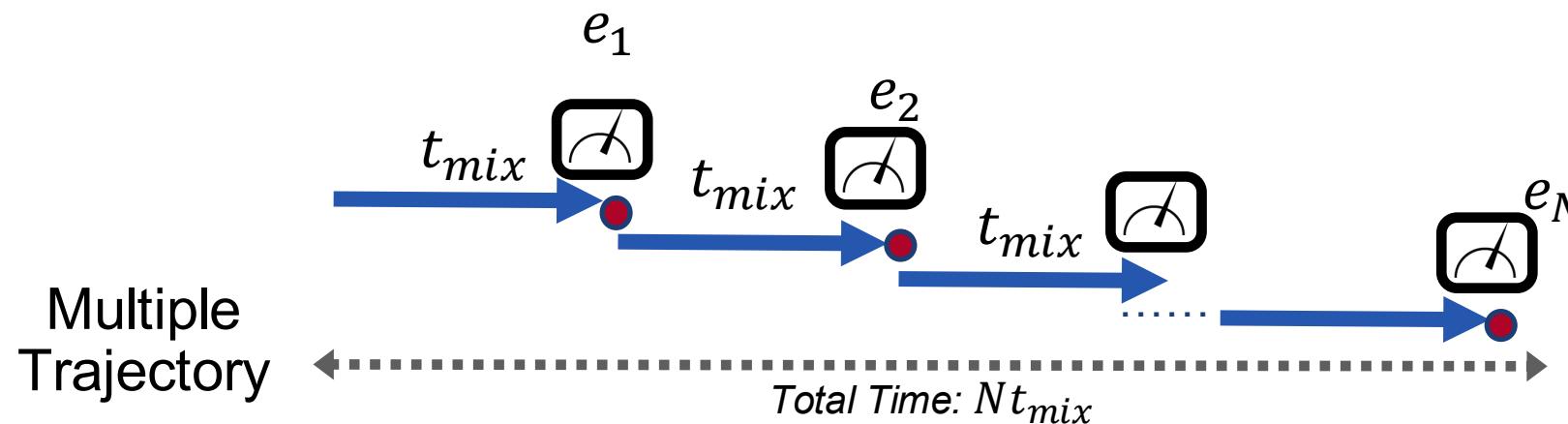
Thanks for listening. Questions ?

$O \rightarrow \text{DB channel}$
?

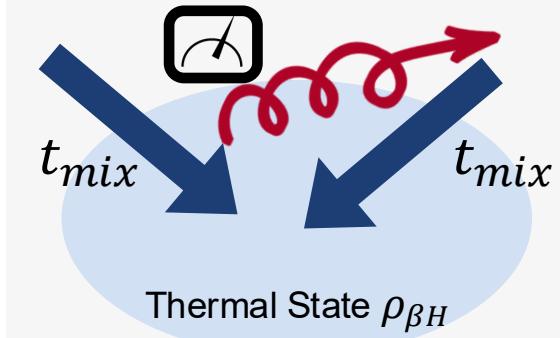
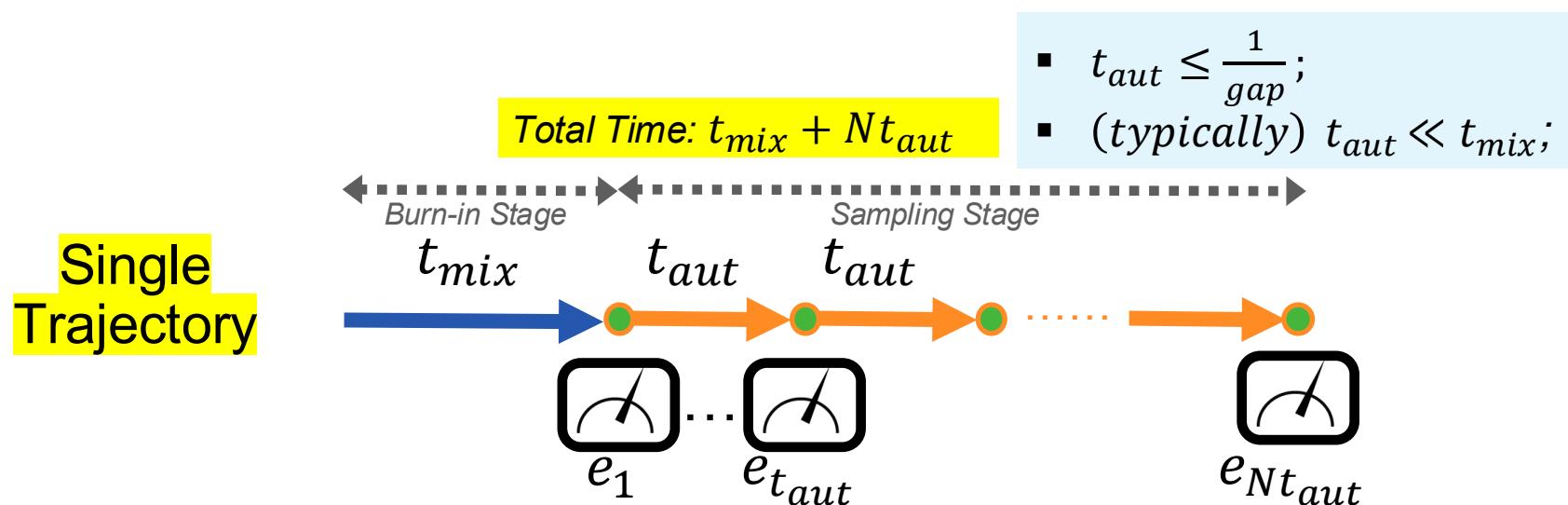
$$\text{tr}(O P_{\beta H})$$

Appendix Q&A

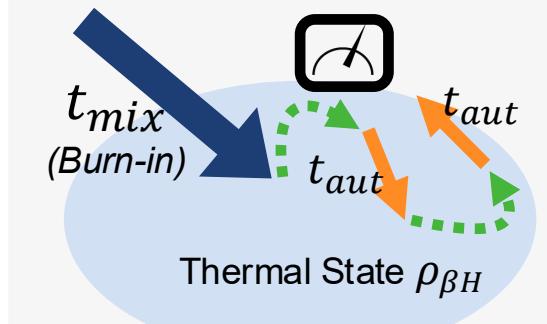
Summary of methods for $tr(H\rho_{\beta H})$



Disturbance by Measurement

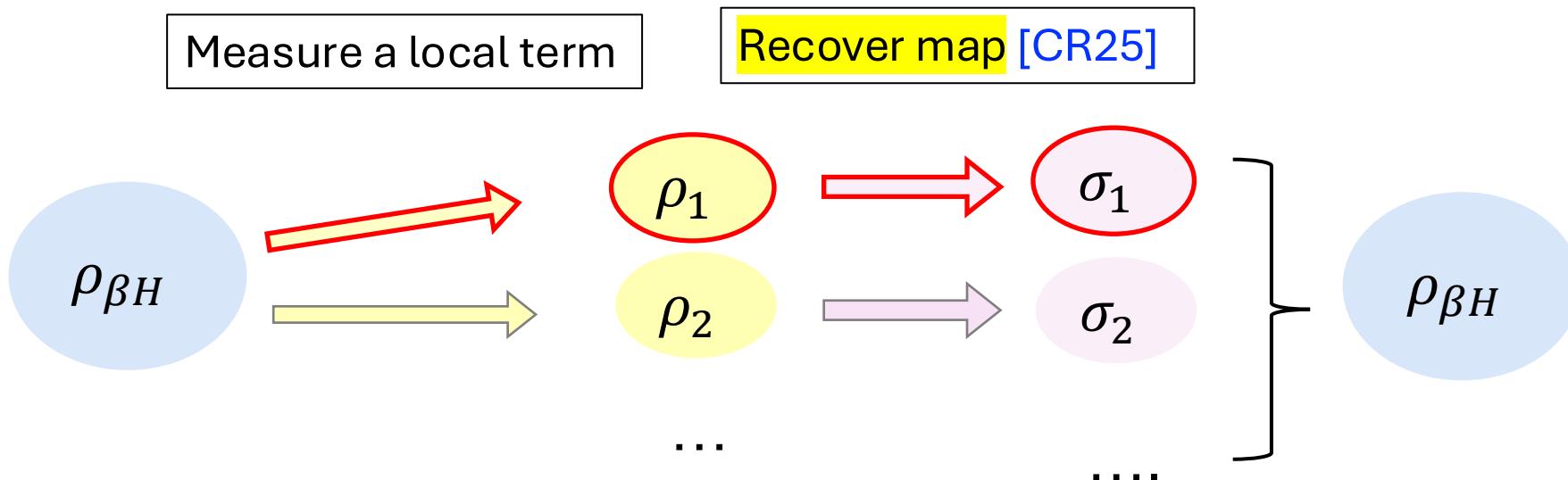
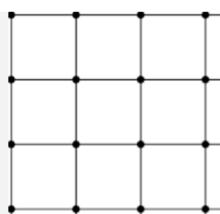


Detailed-Balanced Measurement



How does this work compared to “recover map”

Incomparable, no correlation analysis



[CR25] Chen, Chi-Fang, and Cambyse Rouzé. "Quantum Gibbs states are locally Markovian."

Purifying the Gibbs state? Pros & Cons

Assumptions

$$\text{gap}(\mathcal{L}) = \Delta, \quad e^{t\mathcal{L}}(\rho_0) \rightarrow \rho_{\beta H}$$

$$\Updownarrow$$

$$\text{gap}(H_{\mathcal{L}}) = \Delta, \quad H |\rho_{\beta H}\rangle = |\rho_{\beta H}\rangle$$

prepare $|\rho_{\beta H}\rangle$

Cons

Assume gapped path from I to $H_{\mathcal{L}}$

gap Δ^*

For $\text{tr}(H\rho_{\beta H})$, need to know Δ

Pros

The cost of measurement $\sim \Delta \epsilon^{-1}$ instead of $\text{var}_H \epsilon^{-2}$