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Properties of thermal states

Thermal state describes many-body system at finite temperature

ppy = e P jtr(e FH)

(/W’\) P inverse temperature; H local Hamiltonian

Our task: Properties of thermal state

tr(Oppy ) for observable O

Gradient of Boltzmann machine



Existing methods for estimating tr(0pgy).

*» Classical Markov Chain Monte Carlo (MCMCQC)

(Sign problem; Limited accuracy for general qguantum system)



Existing methods for estimating tr(0pgy).

** Quantum Gibbs sampling (quantum MCMC)
(No sign problem; promising approach for high accuracy)

mixing time ¢,,,;,

= Davies generator-inspired approach [CKBG23,DLL24,RWW23]
= Quantum Metropolis sampling [J124,TOV+11]

System-bath interactions [DZPL25]

= ... (checkyesterday's talk!)



Existing methods for estimating tr(0pgy).

** Quantum Gibbs sampling (quantum MCMC)

mixing time ¢,,,;, ’1 ?
pO — pﬁH ¢ °

Do better!

“* Our goal: Use quantum Gibbs sampling to estimate tr(OpBH).



Existing methods for estimating tr(0pgy).

** Quantum Gibbs sampling (quantum MCMC)

mixing time ¢,,,;,

tr(HpﬁH)
Extension discussed later

“* Our goal: Use quantum Gibbs sampling to estimate tr(OpBH).



Outline tr(Hpgy)

= Multiple-trajectory approach

= Single-trajectory approach (our approach)

= Challenge and strategy

= Practical mode (without knowing the spectral gap)

= Extensions



Multiple-trajectory approach

tr(Hpgi)

tmix @



Multiple-trajectory approach

tr(HpﬁH)

tmix @
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Total Time: Nty

Our goal: Reduce the total time

For € precision,
Set N ~ vary /€*

Get (effectively) independent sample with time shorter tha

Nty M




Single-trajectory approach (our method)

tr(H Pg H) e1 e,
o AED
ﬁ
PBH
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Burn-in Stage Sampling Stage

= Measure every fixed time, e.g. ell (GQPE)

tr(Hpgy) is estimated by the empirical average
1
= (e1 + ... +ek)

How quickly e, becomes effectively independent from e;




Autocorrelation time t ;¢

tr(H Pg H) e1 e,
e DED
ﬁ. () ® o o
' 1 <= Cov(ei,es1)
» Effectively independent sample every t,+ Laut ~ 2 T Z vary
t=1
= Typically tur < thix, (see nextslide) connected to the performance of

(e1 + ... + ex)/K by chebyshev inequality

Total time t,,,;,, + Nt Which is much shorter than Nt,,,;,



Why typically t,+ < tyix?! (a) Intuitive reason

Timescale for effective independence
€1 €t
PBH




Why typically t,+ < tyix?! (a) Intuitive reason

Timescale for effective independence
€1 €t
PBH

(1) warm start




Why typically t,+ < tyix?! (a) Intuitive reason

Timescale for effective independence
€1 €t
PBH

(1) warm start eg. quantum birth-death chain
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Why typically t,+ < tyix?! (a) Intuitive reason

Timescale for effective independence
€1 €t
PBH

(1) warm start (2) taut is observable-dependent

taut K tmix 1S expected especially if

= The observableis local

= or exhibit certain symmetry




Why typically t,+ < tyix?! (a) Intuitive reason

Timescale for effective independence
€1 €t
PBH

(1) warm start (2) taut is observable-dependent

Low-temperature 2D Ising model




Why typically t,+ < tyix?! (a) Intuitive reason

Timescale for effective independence
€1 €t
PBH

(1) warm start (2) tqu: is observable-dependent
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tmix IS €Xponential

t,ut forenergy might be polynomial
suggested by [GA22]

[GA22] R. Gheissari and A. Sinclair, STOC 2022, “Low-temperature ising dynamics with random initializations,”



Why typically t,+ < thix?! (D) rigorous bound

Our result (general theorem): In quantum Gibbs sampling, for any
‘observable \tha,t can be measured by a

detailed balanced(DB) channel,

taut < 1/gap. @_}@

= |ncludes H; Observables commuting with H;

(average energy, heat capacity, *partition function...)
In principle, more general

= For non-DB observable, discussed later




Why typically t,+ < thix?! (D) rigorous bound

Our result (general theorem): In quantum Gibbs sampling, for any

observable that can be measured by a detailed balanced(DB) channel,

observable H

taut é 1/ga’p'



Why typically t,+ < thix?! (D) rigorous bound

Our result (general theorem): In quantum Gibbs sampling, for any

observable that can be measured by a detailed balanced(DB) channel,

observable H

1 1
t. < —log(og .+
gap miT  ~5 gap \g( Ymm}

As large as the system-size n

= |ntheory t,,; may differfromt,,;, by afactor of n;

= |n practice the separation can be even larger (e.g. sub-exponential)




Why typically t,+ < thix?! (D) rigorous bound

Our result (general theorem): In quantum Gibbs sampling, for any

observable that can be measured by a detailed balanced(DB) channel,

observable H

taut é 1/ga’p'

= Qur resultis non-trivial since (next two slides)
1) Measuring H disturbs the Gibbs sampling (controlled)
2) High cost of QPE (reduced to logarithmic overhead)

[Book, LP17]: D. A. Levin and Y. Peres, Markov chains and mixing times, 2017



Why non-trivial (1):
Measurement disrupts the Gibbs sampling evolution

€t

r\

classical MCMC:  |z1) — |22) ... = |T¢)err—
Quantum MCMC:  |¢;) — Z a; 1) —>?<.
i\

|%5)

Our observation:

(MNM) New t,,;, and new t ;7

\ J
I

The effective quantum channel

M measurement channel; A/ Gibbs sampling channel



Why non-trivial (1):
Measurement disrupts the Gibbs sampling evolution

€t

M

classical MCMC:  |z1) — |22) ... = |T¢)err—

Quantum MCMC:  |¢1) — Z a; 1) —>?<.
R

[15)
Our observation:
gap(MNM) > gap(./\/) Proof: compare t.he Dirichlet form;
: , use the contractive property of
! DB channel.

The effective quantum channel

M measurement channel; A/ Gibbs sampling channel



Why non-trivial (2): High cost of QPE

Classical = gatecost~ n,
MCMC === — depth cost ~ 1 et

Quantum high precision QPE
MCMC ﬁl ] l ] [ | gate cost ~ n e_l’
depth cost ~ €1

ﬂl:[l:l

Our solution: unbiased measurement; logarithmic overhead

= Gaussian filtered QPE with ~ 1 variance [M19]

1

= Gate cost ~ n polylog €1, depth cost ~ polylog €~

= Logarithmic ancilla qubits

[M19] J. E. Moussa, “Low-depth quantum metropolis algorithm,” arXiv:1903.01451,2019



Outline tr(Hpgy)

= Single-trajectory approach (our approach)
= Challenge and strategy
= Practical setting (without knowing the spectral gap)

= Extensions



Practical setting: no prior knowledge of t,;ix, taut

Burn-in Stage Sampling Stage
= Measure every fixed time (GQPE)



Practical setting: no prior knowledge of t,;ix, taut

fixed time T

Burn-in Stage Sampling Stage
= Measure every fixed time (GQPE)

% (6’1 + ...+ 6}() — t?"(HpﬁH)

slower convergence rate

=  QOur method can be used as empirical way to verify the convergence
of quantum Gibbs sampling
= (quantum analogy of Gelman-Rubin diagnhostic in MCMQC)



Extension to detailed balanced measurement

Our result can be generalized to any DB observable O.

PBH —> PpH

Total time: t,;x + Nty and t ¢ < 1/gap



Potential extension for general observables

Goal: forany observable O, design a measurement s.t.

(1) Fixes Gibbs state (and satisfy DB)
ppr  =———> pgu (2) Recover tr(0pgy)

Weighted operator Fourier Transform

(WOFT) [CKG23]
O —> 5(7-) (1) {0(7);H} —0, asT—0
RN (2) tr (O(7) panr ) = tr (0 psn)

\\ TN X\\ —~ F00 . .
ERE N O(7) ::/ eHtOe M1 f(t)dt

— 00

[CKG23] C.F.Chen, M. J. Kastoryano, and A. Gilyen, “An efficient and exact noncommutative quantum gibbs sampler,”



Potential extension for general observables

Goal: forany observable O, design a measurement s.t.

(1) Fixes Gibbs state (and satisfy DB)
ppr  =———> pgu (2) Recover tr(0pgy)

Weighted operator Fourier Transform
(WOFT) [CKG23]

0, |:> 5(7-) (1) {6(7')['[} —0, as7—0

(2) tr (O(7) psn ) = tr (O psn)

= Measurement costforO(7)is~ 71

= 771 ~Joge™! if commutator decays exponentially,
e.g. gapped system




Summary and open guestion

Burn-in Stage Sampling Stage

Open Problem: Measure general observable in a DB way?

X x\\
NI NN
: : NN
1) WOFT, more numerical experiments? -
2) Techniques from quantum Gibbs sampling = [CKBG23,DLL24,RWW23]

= [JI24, DZPL25, TOV+11]
O — DB channel

Thanks for listening. Questions ? @ (o (a)

3) e l-lower bound for the overhead?




Appendix Q&A



Summary of methods for tr(Hpgy )
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How does this work compared to “recover map”
Incomparable, no correlation analysis

Measure a local term Recover map [CR25]
PRH
P | > P2 > 0y —  PpH

[CR25] Chen, Chi-Fang, and Cambyse Rouzé. "Quantum Gibbs states are locally Markovian."




Purifying the Gibbs state? Pros & Cons

Assumptions
gap(L)

| <= |

gap(Hp) = A, H |P/3H> = |pgH)

A, €*(po) = psm

Cons |Assume gapped path from I to H

gap A*

 prepare |pgu)

For tr(HpBH), need to know A

Pros The cost of measurement ~ Ae ™! instead of varye~

2
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