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Properties of thermal states

Thermal state describes many-body system at finite temperature

𝜌𝛽𝐻 ≔ 𝑒−𝛽𝐻/𝑡𝑟(𝑒−𝛽𝐻)

𝜷 inverse temperature; 𝑯 local Hamiltonian

Our task: Properties of thermal state

tr(𝑂𝜌𝛽𝐻) for observable 𝑂

Gradient of Boltzmann machine



Existing methods for estimating

❖ Classical Markov Chain Monte Carlo (MCMC)
(Sign problem; Limited accuracy for general quantum system)

𝑡𝑟 𝑂𝜌𝛽𝐻 .



𝜌𝛽𝐻

❖ Quantum Gibbs sampling (quantum MCMC)

𝜌0

mixing time 𝑡𝑚𝑖𝑥

Existing methods for estimating 𝑡𝑟 𝑂𝜌𝛽𝐻 .

▪ Davies generator-inspired approach [CKBG23,DLL24,RWW23]

▪ Quantum Metropolis sampling [JI24,TOV+11]

▪ System-bath interactions [DZPL25]

▪ … (check yesterday's talk!)

(No sign problem; promising approach for high accuracy)



❖ Quantum Gibbs sampling (quantum MCMC)

Existing methods for estimating 𝑡𝑟 𝑂𝜌𝛽𝐻 .

❖ Our goal: Use quantum Gibbs sampling to estimate 𝒕𝒓 𝑶𝝆𝜷𝑯 .

𝜌𝛽𝐻𝜌0

mixing time 𝑡𝑚𝑖𝑥

Do better!



Existing methods for estimating 𝑡𝑟 𝑂𝜌𝛽𝐻 .

𝜌𝛽𝐻𝜌0

mixing time 𝑡𝑚𝑖𝑥

𝒕𝒓 𝑯𝝆𝜷𝑯

Extension discussed later

❖ Quantum Gibbs sampling (quantum MCMC)

❖ Our goal: Use quantum Gibbs sampling to estimate 𝒕𝒓 𝑶𝝆𝜷𝑯 .



Outline

▪ Multiple-trajectory approach

▪ Single-trajectory approach (our approach)

▪ Challenge and strategy

▪ Practical mode (without knowing the spectral gap)

▪ Extensions

𝑡𝑟 𝑯𝝆𝜷𝑯



𝑡𝑚𝑖𝑥

Multiple-trajectory approach
𝑡𝑟 𝐻𝜌𝛽𝐻

𝜌𝛽𝐻
𝜌0



……

𝑡𝑚𝑖𝑥
𝑡𝑚𝑖𝑥

𝑡𝑚𝑖𝑥

Total Time: 𝑁𝑡𝑚𝑖𝑥

Multiple-trajectory approach
𝑡𝑟 𝐻𝜌𝛽𝐻

Get (effectively) independent sample with time shorter than 𝑡𝑚𝑖𝑥 !!!

Our goal: Reduce the total time

For 𝜖 precision,
Set 𝑁 ∼ 𝑣𝑎𝑟𝐻/𝜖2



Single-trajectory approach (our method)
𝑡𝑟 𝐻𝜌𝛽𝐻

𝑡𝑚𝑖𝑥

Burn-in Stage

……

𝜌𝛽𝐻

Sampling Stage

▪ Measure every fixed time, e.g. 𝑒1⋅𝐿, (GQPE)

𝑒1

𝑡𝑟(𝐻𝜌𝛽H) is estimated by the empirical average

How quickly 𝑒𝑡 becomes effectively independent from 𝑒1

𝑒𝑡



▪ Typically taut ≪ tmix , (see next slide)

Autocorrelation time 𝑡𝑎𝑢𝑡

𝑡𝑟 𝐻𝜌𝛽𝐻

𝑡𝑚𝑖𝑥
……

𝑒1 𝑒𝑡

Total time 𝑡𝑚𝑖𝑥 + 𝑁𝑡𝑎𝑢𝑡 which is much shorter than 𝑁𝑡𝑚𝑖𝑥

▪ Effectively independent sample every taut



Why typically taut ≪ tmix? (a) Intuitive reason

……𝜌𝛽𝐻

Timescale for effective independence
𝑒1 𝑒𝑡



Why typically taut ≪ tmix? (a) Intuitive reason

……𝜌𝛽𝐻

Timescale for effective independence
𝑒1 𝑒𝑡

𝑡𝑚𝑖𝑥

taut

|0⟩

|𝑚⟩



Why typically taut ≪ tmix? (a) Intuitive reason

……𝜌𝛽𝐻

Timescale for effective independence
𝑒1 𝑒𝑡

𝑡𝑚𝑖𝑥

taut

|0⟩

|1⟩

|𝑚⟩

𝑡𝑚𝑖𝑥 ∼ 𝑚, 𝑡𝑎𝑢𝑡 ∼ 1

p

1-p

|𝑚⟩

|0⟩



Why typically taut ≪ tmix? (a) Intuitive reason

……𝜌𝛽𝐻

Timescale for effective independence
𝑒1 𝑒𝑡

taut

𝑡𝑎𝑢𝑡 ≪ 𝑡𝑚𝑖𝑥 is expected especially if

▪ The observable is local

▪ or exhibit certain symmetry

|𝑚⟩

|0⟩
𝑡𝑚𝑖𝑥



Why typically taut ≪ tmix? (a) Intuitive reason

……𝜌𝛽𝐻

Timescale for effective independence
𝑒1 𝑒𝑡

taut

Low−temperature 2D Isingmodel

|𝑚⟩

|0⟩
𝑡𝑚𝑖𝑥



Why typically taut ≪ tmix? (a) Intuitive reason

……𝜌𝛽𝐻

Timescale for effective independence
𝑒1 𝑒𝑡

taut

|𝑚⟩

|0⟩
𝑡𝑚𝑖𝑥

|0 … 0⟩ |1 … 1⟩

▪ 𝑡𝑎𝑢𝑡 for energy might be polynomial
suggested by [GA22]

[GA22] R. Gheissari and A. Sinclair, STOC 2022, “Low-temperature ising dynamics with random initializations,”

▪ 𝑡𝑚𝑖𝑥 is exponential



Why typically taut ≪ tmix? (b) rigorous bound

𝜌𝛽𝐻 𝜌𝛽𝐻

▪ Includes H; Observables commuting with H;
(average energy, heat capacity, *partition function…)
In principle, more general

▪ For non-DB observable, discussed later



Why typically taut ≪ tmix? (b) rigorous bound

observable H



Why typically taut ≪ tmix? (b) rigorous bound

As large as the system-size 𝑛

observable H

▪ In theory 𝑡𝑎𝑢𝑡 may differ from 𝑡𝑚𝑖𝑥 by a factor of 𝑛;

▪ In practice the separation can be even larger (e.g. sub-exponential)



Why typically taut ≪ tmix? (b) rigorous bound

observable H

▪ Our result is non-trivial since (next two slides)

1) Measuring H disturbs the Gibbs sampling (controlled)

2) High cost of QPE (reduced to logarithmic overhead)

[Book, LP17]: D. A. Levin and Y. Peres, Markov chains and mixing times, 2017



Why non-trivial (1):
Measurement disrupts the Gibbs sampling evolution

𝑒𝑡

The effective quantum channel

New 𝑡𝑚𝑖𝑥 and new 𝑡𝑎𝑢𝑡?



Why non-trivial (1):
Measurement disrupts the Gibbs sampling evolution

𝑒𝑡

The effective quantum channel

Proof: compare the Dirichlet form;
use the contractive property of
DB channel.



Why non-trivial (2): High cost of QPE

……
Classical

MCMC
▪ gate cost ∼ 𝑛,

depth cost ∼ 1

Quantum
MCMC

high precision QPE
▪ gate cost ∼ 𝑛 𝝐−𝟏,

depth cost ∼ 𝝐−𝟏

……

Our solution: unbiased measurement; logarithmic overhead

▪ Gaussian filtered QPE with ∼ 1 variance [M19]

▪ Gate cost ∼ 𝑛 polylog 𝝐−𝟏, depth cost ∼ polylog 𝝐−𝟏

▪ Logarithmic ancilla qubits

[M19] J. E. Moussa, “Low-depth quantum metropolis algorithm,” arXiv:1903.01451,2019



Outline

▪ Single-trajectory approach (our approach)

▪ Challenge and strategy

▪ Practical setting (without knowing the spectral gap)

▪ Extensions

𝑡𝑟 𝑯𝝆𝜷𝑯



Practical setting: no prior knowledge of 𝑡𝑚𝑖𝑥, 𝑡𝑎𝑢𝑡

……

Burn-in Stage Sampling Stage
▪ Measure every fixed time (GQPE)

𝑡𝑚𝑖𝑥
？



Practical setting: no prior knowledge of 𝑡𝑚𝑖𝑥, 𝑡𝑎𝑢𝑡

fixed time 𝑇
……

Burn-in Stage Sampling Stage
▪ Measure every fixed time (GQPE)

slower convergence rate

▪ Our method can be used as empirical way to verify the convergence
of quantum Gibbs sampling

▪ (quantum analogy of Gelman–Rubin diagnostic in MCMC)



Extension to detailed balanced measurement

𝜌𝛽𝐻 𝜌𝛽𝐻

Our result can be generalized to any DB observable O.

Total time: tmix + Ntaut and taut ≤ 1/gap



Potential extension for general observables
Goal: for any observable O, design a measurement s.t.

𝜌𝛽𝐻 𝜌𝛽𝐻

Weighted operator Fourier Transform
(WOFT) [CKG23]

(1) Fixes Gibbs state (and satisfy DB)
(2) Recover 𝑡𝑟(𝑂𝜌𝛽𝐻)

[CKG23] C.F.Chen, M. J. Kastoryano, and A. Gilyen, “An efficient and exact noncommutative quantum gibbs sampler,”

d



Potential extension for general observables
Goal: for any observable O, design a measurement s.t.

𝜌𝛽𝐻 𝜌𝛽𝐻

Weighted operator Fourier Transform
(WOFT) [CKG23]

(1) Fixes Gibbs state (and satisfy DB)
(2) Recover 𝑡𝑟(𝑂𝜌𝛽𝐻)

▪ Measurement cost for ෠𝑂(𝜏) is ∼ 𝝉−𝟏

▪ 𝜏−1 ∼ log 𝜖−1 if commutator decays exponentially,
e.g. gapped system

d



Summary and open question

……

Burn-in Stage Sampling Stage
Single

Trajectory
Auto-correlation time

Substantial reduction in total time for DB observable (e.g. H)

Open Problem: Measure general observable in a DB way?

1) WOFT, more numerical experiments?

2) Techniques from quantum Gibbs sampling

3) 𝜖−1-lower bound for the overhead?

▪ [CKBG23,DLL24,RWW23]
▪ [JI24, DZPL25, TOV+11]

Thanks for listening. Questions ?



Appendix Q&A



Multiple 
Trajectory

Single
Trajectory

……

……

𝑡𝑚𝑖𝑥 𝑡𝑚𝑖𝑥
𝑡𝑚𝑖𝑥

𝑡𝑚𝑖𝑥 𝑡𝑎𝑢𝑡 𝑡𝑎𝑢𝑡

𝑒1 𝑒𝑡𝑎𝑢𝑡
𝑒𝑁𝑡𝑎𝑢𝑡

𝑒1
𝑒2

𝑒𝑁

Burn-in Stage Sampling Stage

Disturbance by Measurement

Detailed-Balanced Measurement

𝑡𝑚𝑖𝑥 𝑡𝑚𝑖𝑥

Thermal State 𝜌𝛽𝐻

𝑡𝑚𝑖𝑥
(Burn-in)

Thermal State 𝜌𝛽𝐻

𝑡𝑎𝑢𝑡

𝑡𝑎𝑢𝑡

…

Total Time: 𝑁𝑡𝑚𝑖𝑥

Total Time: 𝑡𝑚𝑖𝑥 + 𝑁𝑡𝑎𝑢𝑡

Summary of methods for 𝑡𝑟 𝐻𝜌𝛽𝐻

▪ 𝑡𝑎𝑢𝑡 ≤
1

𝑔𝑎𝑝
;

▪ 𝑡𝑦𝑝𝑖𝑐𝑎𝑙𝑙𝑦 𝑡𝑎𝑢𝑡 ≪ 𝑡𝑚𝑖𝑥;



How does this work compared to “recover map”
Incomparable, no correlation analysis

𝜌𝛽𝐻 𝜌𝛽𝐻

Measure a local term

𝜌1

𝜌2

…

Recover map [CR25]

[CR25] Chen, Chi-Fang, and Cambyse Rouzé. "Quantum Gibbs states are locally Markovian."

𝜎1

𝜎2

….



Purifying the Gibbs state? Pros & Cons

For 𝑡𝑟 𝐻𝜌𝛽𝐻 , need to know Δ

The cost of measurement ∼ Δ𝜖−1 instead of 𝑣𝑎𝑟𝐻𝜖−2

Cons

Pros
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